| 
 | 
 | 
A polynomial given by
![]()  | 
(1) | 
![]()  | 
(2) | 
![]()  | 
(3) | 
| (4) | 
| (5) | 
The Logarithm of the cyclotomic polynomial
| (6) | 
The first few cyclotomic Polynomials are
The Polynomial 
 can be factored as
| (7) | 
![]()  | 
(8) | 
![]()  | 
(9) | 
| (10) | 
See also Aurifeuillean Factorization, Möbius Inversion Formula
References
Beiter, M.  ``The Midterm Coefficient of the Cyclotomic Polynomial  
Beiter, M.  ``Magnitude of the Coefficients of the Cyclotomic Polynomial  
Bloom, D. M.  ``On the Coefficients of the Cyclotomic Polynomials.''  Amer. Math. Monthly 75, 372-377, 1968.
 
Carlitz, L.  ``The Number of Terms in the Cyclotomic Polynomial  
Conway, J. H. and Guy, R. K.  The Book of Numbers.  New York: Springer-Verlag, 1996.
 
de Bruijn, N. G.  ``On the Factorization of Cyclic Groups.''  Indag. Math. 15, 370-377, 1953.
 
Lam, T. Y. and Leung, K. H.  ``On the Cyclotomic Polynomial  
Lehmer, E.  ``On the Magnitude of Coefficients of the Cyclotomic Polynomials.''  Bull. Amer. Math. Soc. 42, 389-392, 1936.
 
McClellan, J. H. and Rader, C.  Number Theory in Digital Signal Processing.  Englewood Cliffs, NJ: Prentice-Hall, 1979.
 
Migotti, A.  ``Zur Theorie der Kreisteilungsgleichung.''
  Sitzber. Math.-Naturwiss. Classe der Kaiser. Akad. der Wiss., Wien 87, 7-14, 1883.
 
Schroeder, M. R.
  Number Theory in Science and Communication, with Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity, 3rd ed.
  New York: Springer-Verlag, p. 245, 1997.
 
Sloane, N. J. A.  Sequence 
A013594
in ``The On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
 
Vardi, I.  Computational Recreations in Mathematica.  Redwood City, CA: Addison-Wesley, pp. 8 and 224-225, 1991.
 
.''  Amer. Math. Monthly 71, 769-770, 1964.
.''  Amer. Math. Monthly 75, 370-372, 1968.
.''  Amer. Math. Monthly 73, 979-981, 1966.
.''  Amer. Math. Monthly 103, 562-564, 1996.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein