The Scale Factors are 
, 
 and the separation functions are
, 
, 
, given a Stäckel Determinant of
.  The Laplacian is
  | 
(1) | 
 
Attempt Separation of Variables by writing
  | 
(2) | 
 
then the Helmholtz Differential Equation becomes
![\begin{displaymath}
{1\over u^2+v^2}\left[{V\Theta \left({{1\over u}{dU\over du}...
...{dV\over dv}+{d^2V\over dv^2}}\right)}\right]+k^2 UV\Theta =0.
\end{displaymath}](h_1054.gif)  | 
(3) | 
 
Now divide by 
,
![\begin{displaymath}
{u^2v^2\over u^2+v^2}\left[{{1\over U}\left({{1\over u}{dU\o...
...ght)}\right]+{1\over \Theta} {d^2\Theta\over d\theta^2}+k^2=0.
\end{displaymath}](h_1056.gif)  | 
(4) | 
 
Separating the 
 part,
  | 
(5) | 
 
![\begin{displaymath}
{u^2v^2\over u^2+v^2}\left[{{1\over U}\left({{1\over u}{dU\o...
...{{1\over v}{dV\over dv}+{d^2V\over dv^2}}\right)}\right]= k^2,
\end{displaymath}](h_1058.gif)  | 
(6) | 
 
so
  | 
(7) | 
 
which has solution
  | 
(8) | 
 
and
![\begin{displaymath}
\left[{{1\over U}\left({{1\over u}{dU\over du}+{d^2 U\over d...
...}+{d^2 V\over dv^2}}\right)}\right]-k^2{u^2+v^2\over u^2v^2}=0
\end{displaymath}](h_1061.gif)  | 
(9) | 
 
![\begin{displaymath}
\left[{{1\over U}\left({{1\over u}{dU\over du}+{d^2 U\over d...
...V\over dv}+{d^2 V\over dv^2}}\right)-{k^2\over v^2}}\right]=0.
\end{displaymath}](h_1062.gif)  | 
(10) | 
 
This can be separated
  | 
(11) | 
 
  | 
(12) | 
 
so
  | 
(13) | 
 
  | 
(14) | 
 
References
Arfken, G.  ``Parabolic Coordinates 
.''  §2.12 in 
  Mathematical Methods for Physicists, 2nd ed.  Orlando, FL: Academic Press, pp. 109-111, 1970.
Morse, P. M. and Feshbach, H.  Methods of Theoretical Physics, Part I.  New York:
  McGraw-Hill, pp. 514-515 and 660, 1953.
© 1996-9 Eric W. Weisstein 
1999-05-25