| 
 | 
 | 
A set of Orthogonal Polynomials. The Hermite polynomials 
 are illustrated above for 
 and 
, 2,
..., 5.
The Generating Function for Hermite polynomials is
![]()  | 
(1) | 
![]()  | 
|||
![]()  | 
(2) | 
![]()  | 
|||
![]()  | 
(3) | 
![]()  | 
(4) | ||
![]()  | 
(5) | 
![]()  | 
(6) | ||
![]()  | 
|||
![]()  | 
(7) | 
| (8) | 
| (9) | 
![]()  | 
(10) | ||
![]()  | 
(11) | ||
![]()  | 
(12) | 
| (13) | 
| (14) | 
| (15) | 
| (16) | 
These obey the orthogonality conditions
![]()  | 
![]()  | 
(17) | |
![]()  | 
(18) | ||
![]()  | 
![]()  | 
(19) | |
![]()  | 
![]()  | 
||
| (20) | |||
![]()  | 
![]()  | 
||
| (21) | 
They also satisfy the Recurrence Relations
| (22) | 
| (23) | 
The Discriminant is
![]()  | 
(24) | 
An interesting identity is
![]()  | 
(25) | 
The first few Polynomials are

A class of generalized Hermite Polynomials 
 satisfying
![]()  | 
(26) | 
| (27) | 
![]()  | 
(28) | 
| (29) | 
A modified version of the Hermite Polynomial is sometimes defined by
| (30) | 
See also Mehler's Hermite Polynomial Formula, Weber Functions
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Orthogonal Polynomials.''  Ch. 22 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 771-802, 1972.
 
Arfken, G.  ``Hermite Functions.''  §13.1 in Mathematical Methods for Physicists, 3rd ed.
  Orlando, FL: Academic Press, pp. 712-721, 1985.
 
Chebyshev, P. L.  ``Sur le développement des fonctions à une seule variable.''  Bull. ph.-math.,
  Acad. Imp. Sc. St. Pétersbourg 1, 193-200, 1859.
 
Chebyshev, P. L.  Oeuvres, Vol. 1.  New York: Chelsea, pp. 49-508, 1987.
 
Djordjevic, G.  ``On Some Properties of Generalized Hermite Polynomials.''  Fib. Quart. 34, 2-6, 1996.
 
Hermite, C.  ``Sur un nouveau développement en série de fonctions.''  Compt. Rend. Acad. Sci. Paris 58,
  93-100 and 266-273, 1864.  Reprinted in Hermite, C.   Oeuvres complètes, Vol. 2.  Paris, pp. 293-308, 1908.
 
Hermite, C.  Oeuvres complètes, Vol. 3.  Paris, p. 432, 1912.
 
Iyanaga, S. and Kawada, Y. (Eds.).  ``Hermite Polynomials.''  Appendix A, Table 20.IV in
  Encyclopedic Dictionary of Mathematics.  Cambridge, MA: MIT Press, pp. 1479-1480, 1980.
 
Sansone, G.	 ``Expansions in Laguerre and Hermite Series.''  Ch. 4 in Orthogonal Functions, rev. English ed.
  New York: Dover, pp. 295-385, 1991.
 
Spanier, J. and Oldham, K. B.  ``The Hermite Polynomials  
Subramanyan, P. R.  ``Springs of the Hermite Polynomials.''  Fib. Quart. 28, 156-161, 1990.
 
Szegö, G.  Orthogonal Polynomials, 4th ed.  Providence, RI: Amer. Math. Soc., 1975.
 
.''
  Ch. 24 in An Atlas of Functions.  Washington, DC: Hemisphere, pp. 217-223, 1987.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein