| 
 | 
 | 
A Flexagon made by folding a strip into adjacent Equilateral Triangles.  The
number of states possible in a hexaflexagon is the Catalan Number 
.
See also Flexagon, Flexatube, Tetraflexagon
References
Cundy, H. and Rollett, A.  Mathematical Models, 3rd ed.  Stradbroke, England: Tarquin Pub., pp. 205-207, 1989.
 
Gardner, M.  Ch. 1 in The Scientific American Book of Mathematical Puzzles & Diversions.  New York:
  Simon and Schuster, 1959.
 
Gardner, M.  Ch. 2 in The Second Scientific American Book of Mathematical Puzzles & Diversions: A New Selection. 
  New York: Simon and Schuster, 1961.
 
Maunsell, F. G.  ``The Flexagon and the Hexaflexagon.''  Math. Gazette 38, 213-214, 1954.
 
Wheeler, R. F.  ``The Flexagon Family.''  Math. Gaz. 42, 1-6, 1958.