| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
A Product involving an Infinite number of terms.  Such products can converge.  In fact, for Positive
, the Product 
 converges to a Nonzero number Iff 
converges.
Infinite products can be used to define the Cosine 
![]()  | 
(1) | 
![]()  | 
(2) | 
![]()  | 
(3) | 
![]()  | 
(4) | ||
![]()  | 
(5) | 
The product
![]()  | 
(6) | 
![]()  | 
(7) | ||
![]()  | 
(8) | ||
![]()  | 
![]()  | 
(9) | |
![]()  | 
(10) | 
![]()  | 
(11) | 
![]()  | 
(12) | ||
![]()  | 
![]()  | 
(13) | |
![]()  | 
![]()  | 
(14) | |
![]()  | 
(15) | 
See also Cosine, Dirichlet Eta Function, Euler Identity, Gamma Function, Iterated Exponential Constants, Polygon Circumscribing Constant, Polygon Inscribing Constant, Q-Function, Sine
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 75, 1972.
 
Arfken, G.  ``Infinite Products.''  §5.11 in Mathematical Methods for Physicists, 3rd ed.
  Orlando, FL: Academic Press, pp. 346-351, 1985.
 
Blatner, D.  The Joy of Pi.  New York: Walker, p. 119, 1997.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/infprd/infprd.html
 
Hansen, E. R.  A Table of Series and Products.  Englewood Cliffs, NJ: Prentice-Hall, 1975.
 
Whittaker, E. T. and Watson, G. N.  §7.5 and 7.6 in A Course in Modern Analysis, 4th ed.
  Cambridge, England: Cambridge University Press, 1990.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein