| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Euler 
 (Le Lionnais 1983) and Eisenstein (1844) showed that the function 
, where 
is an abbreviation for 
, converges only for 
, that is, 0.0659...
1.44466.... The value it converges to is the inverse of 
, which has a closed form expression in terms of
Lambert's W-Function,
| (1) | 
| (2) | 
 
 | 
|
| 
 
  | 
(3) | 
The function 
 converges only for 
, that is, 
 The value it converges to is the inverse of 
.
Some interesting related integrals are
![]()  | 
(4) | 
![]()  | 
(5) | 
See also Lambert's W-Function
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, 1972.
 
Baker, I. N. and Rippon, P. J.  ``A Note on Complex Iteration.''  Amer. Math. Monthly 92, 501-504, 1985.
 
Barrows, D. F.  ``Infinite Exponentials.''  Amer. Math. Monthly 43, 150-160, 1936.
 
Creutz, M. and Sternheimer, R. M.  ``On the Convergence of Iterated Exponentiation, Part I.''  Fib. Quart.
  18, 341-347, 1980.
 
Creutz, M. and Sternheimer, R. M.  ``On the Convergence of Iterated Exponentiation, Part II.''  Fib. Quart.
  19, 326-335, 1981.
 
de Villiers, J. M. and Robinson, P. N.  ``The Interval of Convergence and Limiting Functions of a Hyperpower Sequence.''
  Amer. Math. Monthly 93, 13-23, 1986.
 
Eisenstein, G.  ``Entwicklung von 
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/itrexp/itrexp.html
 
Khovanskii, A. N.  The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory.
  Groningen, Netherlands: P. Noordhoff, 1963.
 
Knoebel, R. A.  ``Exponentials Reiterated.''  Amer. Math. Monthly 88, 235-252, 1981.
 
Le Lionnais, F.  Les nombres remarquables.  Paris: Hermann, pp. 22 and 39, 1983.
 
Mauerer, H.  ``Über die Funktion 
 
Spiegel, M. R.  Mathematical Handbook of Formulas and Tables.  New York: McGraw-Hill, 1968.
 
Vardi, I.  Computational Recreations in Mathematica.  Reading, MA: Addison-Wesley, p. 12,
  1991.
 
.''  J. Reine angew. Math. 28, 49-52,
  1844.
 für ganzzahliges Argument (Abundanzen).''
  Mitt. Math. Gesell. Hamburg 4, 33-50, 1901.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein