| 
 | 
 | 
Let 
 be the mean anomaly 
 and 
 the Eccentric Anomaly of a body orbiting on an
Ellipse with Eccentricity 
, then
| (1) | 
Writing a 
 as a Power Series in 
 gives
![]()  | 
(2) | 
![]()  | 
(3) | 
| (4) | 
| (5) | 
There is also a series solution in Bessel Functions of the First Kind,
![]()  | 
(6) | 
| (7) | 
The equation can also be solved by letting 
 be the Angle between the planet's motion and the
direction Perpendicular to the Radius Vector.  Then
| (8) | 
| (9) | 
| (10) | 
| (11) | 
Iterative methods such as the simple 
| (12) | 
| (13) | 
In solving Kepler's equation, Stieltjes required the solution to
| (14) | 
See also Eccentric Anomaly
References
Danby, J. M.  Fundamentals of Celestial Mechanics, 2nd ed., rev. ed.  Richmond, VA: Willmann-Bell, 1988.
 
Dörrie, H.  ``The Kepler Equation.''  §81 in
  100 Great Problems of Elementary Mathematics: Their History and Solutions.
  New York: Dover, pp. 330-334, 1965.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/lpc/lpc.html
 
Goldstein, H.  Classical Mechanics, 2nd ed.  Reading, MA: Addison-Wesley, pp. 101-102
  and 123-124, 1980.
 
Goursat, E.  A Course in Mathematical Analysis, Vol. 2.  New York: Dover, p. 120, 1959.
 
Henrici, P.  Applied and Computational Complex Analysis, Vol. 1: Power Series-Integration-Conformal Mapping-Location of Zeros.
  New York: Wiley, 1974.
 
Ioakimids, N. I. and Papadakis, K. E.  ``A New Simple Method for the Analytical Solution of Kepler's Equation.''
  Celest. Mech. 35, 305-316, 1985.
 
Ioakimids, N. I. and Papadakis, K. E.  ``A New Class of Quite Elementary Closed-Form Integrals Formulae for Roots
  of Nonlinear Systems.''  Appl. Math. Comput. 29, 185-196, 1989.
 
Le Lionnais, F.  Les nombres remarquables.  Paris: Hermann, p. 36, 1983.
 
Marion, J. B. and Thornton, S. T.  ``Kepler's Equations.''  §7.8 in 
  Classical Dynamics of Particles & Systems, 3rd ed.
  San Diego, CA: Harcourt Brace Jovanovich, pp. 261-266, 1988.
 
Moulton, F. R.  An Introduction to Celestial Mechanics, 2nd rev. ed.  New York: Dover, pp. 159-169, 1970.
 
Siewert, C. E. and Burniston, E. E.  ``An Exact Analytical Solution of Kepler's Equation.''  Celest. Mech. 6, 294-304, 1972.
 
Wintner, A.  The Analytic Foundations of Celestial Mechanics.  Princeton, NJ: Princeton University Press, 1941.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein