| 
 | 
 | 
The Kummer surfaces are a family of Quartic Surfaces given by the algebraic equation
| (1) | 
| (2) | 
| (3) | |||
| (4) | |||
| (5) | |||
| (6) | 
| (7) | 
| (8) | 
| (9) | 
The following table gives the number of Ordinary Double Points for various ranges of 
,
corresponding to the preceding illustrations.
| 
 | 
4 | 12 | 
| 
 | 
||
| 
 | 
4 | 12 | 
| 16 | 0 | |
| 16 | 0 | 
The Kummer surfaces can be represented parametrically by hyperelliptic Theta Functions. Most of the Kummer surfaces admit 16 Ordinary Double Points, the maximum possible for a Quartic Surface. A special case of a Kummer surface is the Tetrahedroid.
Nordstrand gives the implicit equations as
| (10) | 
| (11) | 
See also Quartic Surface, Roman Surface, Tetrahedroid
References
Endraß, S.  ``Flächen mit vielen Doppelpunkten.''  DMV-Mitteilungen 4, 17-20, Apr. 1995.
 
Endraß, S.  ``Kummer Surfaces.''
http://www.mathematik.uni-mainz.de/AlgebraischeGeometrie/docs/Ekummer.shtml.
 
Fischer, G. (Ed.).  Mathematical Models from the Collections of Universities and Museums.
  Braunschweig, Germany: Vieweg, pp. 14-19, 1986.
 
Fischer, G. (Ed.).  Plates 34-37 in 
  Mathematische Modelle/Mathematical Models, Bildband/Photograph Volume.
  Braunschweig, Germany: Vieweg, pp. 33-37, 1986.
 
Guy, R. K.  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, p. 183, 1994.
 
Hudson, R.  Kummer's Quartic Surface.  Cambridge, England: Cambridge University Press, 1990.
 
Kummer, E.  ``Über die Flächen vierten Grades mit sechszehn singulären Punkten.''  Ges. Werke 2, 418-432.
 
Kummer, E.  ``Über Strahlensysteme, deren Brennflächen Flächen vierten Grades mit sechszehn singulären Punkten sind.''
  Ges. Werke 2, 418-432.
 
Nordstrand, T.  ``Kummer's Surface.'' 
http://www.uib.no/people/nfytn/kummtxt.htm.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein