Also called Gauss-Laguerre Quadrature or Laguerre Quadrature.  A Gaussian Quadrature over
the interval 
 with Weighting Function 
.  The Abscissas for quadrature order 
 are
given by the Roots of the Laguerre Polynomials 
. The weights are
  | 
(1) | 
 
where 
 is the Coefficient of 
 in 
.  For Laguerre Polynomials,
  | 
(2) | 
 
where 
 is a Factorial, so
  | 
(3) | 
 
Additionally,
  | 
(4) | 
 
so
  | 
(5) | 
 
(Note that the normalization used here is different than that in Hildebrand 1956.)  Using the recurrence relation
  | 
(6) | 
 
which implies
  | 
(7) | 
 
gives
![\begin{displaymath}
w_i={1\over x_i[L_n'(x_i)]^2}={x_i\over (n+1)^2[L_{n+1}(x_i)]^2}.
\end{displaymath}](l1_212.gif)  | 
(8) | 
 
The error term is
  | 
(9) | 
 
Beyer (1987) gives a table of Abscissas and weights up to 
.
  | 
  | 
  | 
| 2 | 
0.585786 | 
0.853553 | 
|   | 
3.41421 | 
0.146447 | 
| 3 | 
0.415775 | 
0.711093 | 
|   | 
2.29428 | 
0.278518 | 
|   | 
6.28995 | 
0.0103893 | 
| 4 | 
0.322548 | 
0.603154 | 
|   | 
1.74576 | 
0.357419 | 
|   | 
4.53662 | 
0.0388879 | 
|   | 
9.39507 | 
0.000539295 | 
| 5 | 
0.26356 | 
0.521756 | 
|   | 
1.4134 | 
0.398667 | 
|   | 
3.59643 | 
0.0759424 | 
|   | 
7.08581 | 
0.00361176 | 
|   | 
12.6408 | 
0.00002337 | 
 
The Abscissas and weights can be computed analytically for small 
.
For the associated Laguerre polynomial 
 with Weighting Function 
,
  | 
(10) | 
 
and
  | 
(11) | 
 
The weights are
![\begin{displaymath}
w_i={n!\Gamma(n+\beta+1)\over x_i[{L_m^\beta}'(x_i)]^2}={n!\Gamma(n+\beta+1)x_i\over [L_{n+1}^\beta(x_i)]^2},
\end{displaymath}](l1_225.gif)  | 
(12) | 
 
where 
 is the Gamma Function, and the error term is
  | 
(13) | 
 
References
Beyer, W. H.  CRC Standard Mathematical Tables, 28th ed.  Boca Raton, FL: CRC Press, p. 463, 1987.
Chandrasekhar, S.  Radiative Transfer.  New York: Dover, pp. 64-65, 1960.
Hildebrand, F. B.  Introduction to Numerical Analysis.  New York: McGraw-Hill, pp. 325-327, 1956.
© 1996-9 Eric W. Weisstein 
1999-05-26