| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Let 
 denote the number of Positive Integers not exceeding 
 which can be expressed as a sum of
two squares, then
| (1) | 
![]()  | 
(2) | 
![]()  | 
(3) | 
| (4) | 
| (5) | 
![]()  | 
|||
| (6) | 
| (7) | 
References
Berndt, B. C.  Ramanujan's Notebooks, Part IV.  New York: Springer-Verlag, pp. 60-66, 1994.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/lr/lr.html
 
Flajolet, P. and Vardi, I.  ``Zeta Function Expansions of Classical Constants.''  Unpublished manuscript.  1996.
  http://pauillac.inria.fr/algo/flajolet/Publications/landau.ps.
 
Hardy, G. H.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed.  New York: Chelsea, 
  pp. 61-63, 1940.
 
Landau, E.  ``Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindeszahl der zu ihrer
  additiven Zusammensetzung erforderlichen Quadrate.''  Arch. Math. Phys. 13, 305-312, 1908.
 
Shanks, D.  ``The Second-Order Term in the Asymptotic Expansion of  
Shanks, D.  ``Non-Hypotenuse Numbers.''  Fibonacci Quart. 13, 319-321, 1975.
 
Shanks, D. and Schmid, L. P.  ``Variations on a Theorem of Landau.  I.''  Math. Comput. 20, 551-569, 1966.
 
Shiu, P.  ``Counting Sums of Two Squares: The Meissel-Lehmer Method.''  Math. Comput. 47, 351-360, 1986.
 
.''  Math. Comput. 18, 75-86, 1964.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein