| 
 | 
 | 
A generalization of the Riemann Zeta Function with a Formula
![]()  | 
(1) | 
![]()  | 
(2) | 
| (3) | 
![]()  | 
(4) | 
| (5) | |||
![]()  | 
(6) | ||
![]()  | 
(7) | 
| (8) | 
For Positive integers 
, 
, and 
,
| 
 | 
|
| 
 | 
|
| 
 | 
(9) | 
| 
 | 
(10) | 
 
 | 
(11) | 
 
 | 
(12) | 
 
 | 
|
 
 | 
(13) | 
See also Khintchine's Constant, Polygamma Function, Psi Function, Riemann Zeta Function, Zeta Function
References
Apostol, T. M.  Introduction to Analytic Number Theory.  New York: Springer-Verlag, 1995.
 
Elizalde, E.; Odintsov, A. D.; and Romeo, A.  Zeta Regularization Techniques with Applications.  
  River Edge, NJ: World Scientific, 1994.
 
Knopfmacher, J.  ``Generalised Euler Constants.''  Proc. Edinburgh Math. Soc. 21, 25-32, 1978.
 
Magnus, W. and Oberhettinger, F.  Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed.
  New York: Springer-Verlag, 1966.
 
Miller, J. and Adamchik, V.  ``Derivatives of the Hurwitz Zeta Function for Rational Arguments.''  Submitted to
  J. Symb. Comput.
 
Spanier, J. and Oldham, K. B.  ``The Hurwitz Function  
Whittaker, E. T. and Watson, G. N.  A Course in Modern Analysis, 4th ed.  Cambridge, England: Cambridge University 
  Press, pp. 268-269, 1950.
 
.''
  Ch. 62 in An Atlas of Functions.
  Washington, DC: Hemisphere, pp. 653-664, 1987.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein