| 
 | 
 | 
The polygamma function is sometimes denoted 
, and sometimes 
.  In 
 notation,
![]()  | 
(1) | ||
![]()  | 
(2) | ||
| (3) | 
![]()  | 
|||
![]()  | 
(4) | 
| (5) | 
The polygamma function obeys the Recurrence Relation
| (6) | 
| (7) | 
![]()  | 
(8) | 
In general, special values for integral indices are given by
| (9) | |||
| (10) | 
| (11) | |||
| (12) | |||
| (13) | |||
| (14) | 
R. Manzoni has shown that the polygamma function can be expressed in terms of Clausen Functions 
for Rational arguments and integer index.  Special cases are given by
| (15) | |||
| (16) | |||
| (17) | |||
| (18) | |||
| (19) | |||
![]()  | 
|||
| (20) | |||
![]()  | 
|||
| (21) | |||
| (22) | |||
| (23) | |||
| (24) | |||
| (25) | |||
| (26) | |||
| (27) | 
See also Clausen Function, Digamma Function, Gamma Function, Stirling's Series
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Polygamma Functions.''  §6.4 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 260, 1972.
 
Adamchik, V. S.  ``Polygamma Functions of Negative Order.''  Submitted to
  J. Symb. Comput.
 
Arfken, G.  ``Digamma and Polygamma Functions.''  §10.2 in Mathematical Methods for Physicists, 3rd ed.
  Orlando, FL: Academic Press, pp. 549-555, 1985.
 
Davis, H. T.  Tables of the Higher Mathematical Functions.  Bloomington, IN: Principia Press, 1933.
 
Kolbig, V.  ``The Polygamma Function  
Morse, P. M. and Feshbach, H.  Methods of Theoretical Physics, Part I.  New York: McGraw-Hill, pp. 422-424, 1953.
 
 for 
 and 
.''  J. Comp. Appl. Math. 75, 43-46, 1996.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein