The procedure of finding the value of one or more parameters for a given statistic which makes the known
Likelihood distribution a Maximum.  The maximum likelihood estimate for a parameter 
 is denoted
.
For a Bernoulli Distribution,
![\begin{displaymath}
{d\over d\theta} \left[{{N\choose Np} \theta^{Np}(1-\theta )^{Nq}}\right]= Np(1-\theta)-\theta Nq = 0,
\end{displaymath}](m_716.gif)  | 
(1) | 
 
so maximum likelihood occurs for 
.  If 
 is not known ahead of time, the likelihood function is
where 
 or 1, and 
, ..., 
.
  | 
(3) | 
 
  | 
(4) | 
 
  | 
(5) | 
 
  | 
(6) | 
 
For a Gaussian Distribution,
![\begin{displaymath}
f(x_1,\ldots,x_n\vert\mu,\sigma) = \prod {1\over\sigma\sqrt{...
...xp}\nolimits \left[{-{\sum (x_i-\mu)^2\over 2\sigma^2}}\right]
\end{displaymath}](m_728.gif)  | 
(7) | 
 
  | 
(8) | 
 
  | 
(9) | 
 
gives
  | 
(10) | 
 
  | 
(11) | 
 
gives
  | 
(12) | 
 
Note that in this case, the maximum likelihood Standard Deviation is the sample Standard Deviation, which
is a Biased Estimator for the population Standard Deviation.
For a weighted Gaussian Distribution,
![\begin{displaymath}
f(x_1,\ldots,x_n\vert\mu,\sigma) = \prod {1\over\sigma_i\sqr...
...xp}\nolimits \left[{-{\sum (x_i-\mu)^2\over 2\sigma^2}}\right]
\end{displaymath}](m_734.gif)  | 
(13) | 
 
  | 
(14) | 
 
  | 
(15) | 
 
gives
  | 
(16) | 
 
The Variance of the Mean is then
  | 
(17) | 
 
But
  | 
(18) | 
 
so
For a Poisson Distribution,
  | 
(20) | 
 
  | 
(21) | 
 
  | 
(22) | 
 
  | 
(23) | 
 
See also Bayesian Analysis
References
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.  ``Least Squares as a Maximum Likelihood
  Estimator.''  §15.1 in
  Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.  Cambridge, England:
  Cambridge University Press, pp. 651-655, 1992.
© 1996-9 Eric W. Weisstein 
1999-05-26