Generalizes the differential equation for the Gaussian Distribution
  | 
(1) | 
 
to
  | 
(2) | 
 
Let 
, 
 be the roots of 
.  Then the possible types of curves are
- 0. 
, 
.  E.g., Normal Distribution.
 - I. 
, 
.  E.g., Beta Distribution.
 - II. 
, 
, 
 where 
.
 - III. 
, 
, 
 where 
.  E.g., Gamma Distribution.  This case is
intermediate to cases I and VI.
 - IV. 
, 
.
 - V. 
, 
 where 
.  Intermediate to cases IV and VI.
 - VI. 
, 
 where 
 is the larger root. E.g., Beta Prime Distribution.
 - VII. 
, 
, 
.  E.g., Student's t-Distribution.
 
Classes IX-XII are discussed in Pearson (1916).  See also Craig (in Kenney and Keeping 1951). If a Pearson curve possesses a
Mode, it will be at 
.  Let 
 at 
 and 
, where these may be 
 or 
.  If
 also vanishes at 
, 
, then the 
th Moment and 
th Moments exist.
 
 | 
 | 
| 
 
  | 
(3) | 
giving
 
 | 
 | 
 
 | 
(4) | 
![\begin{displaymath}
0-\int_{c_1}^{c_2} y[arx^{r-1}+b(r+1)x^r+c(r+2)x^{r+1}]\,dx = \int_{c_1}^{c_2} y(mx^r-x^{r+1})\,dx
\end{displaymath}](p1_924.gif)  | 
(5) | 
 
also,
  | 
(6) | 
 
so
  | 
(7) | 
 
For 
, 
  | 
(8) | 
 
so
  | 
(9) | 
 
For 
, 
  | 
(10) | 
 
so
  | 
(11) | 
 
Now let 
.  Then 
Hence 
, and 
 so
![\begin{displaymath}
(1-3c)r\alpha_{r-1}-mr\alpha_r+[c(r+2)-1]\alpha_{r+1}=0.
\end{displaymath}](p1_941.gif)  | 
(15) | 
 
For 
,
  | 
(16) | 
 
For 
,
  | 
(17) | 
 
So the Skewness and Kurtosis are
So the parameters 
, 
, and 
 can be written
where
  | 
(23) | 
 
References
Craig, C. C.  ``A New Exposition and Chart for the Pearson System of Frequency Curves.''  Ann. Math. Stat. 7, 16-28, 1936.
Kenney, J. F. and Keeping, E. S.  Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, p. 107, 1951.
Pearson, K.  ``Second Supplement to a Memoir on Skew Variation.''  Phil. Trans. A 216, 429-457, 1916.
© 1996-9 Eric W. Weisstein 
1999-05-26