| 
 | 
 | 
A procedure used in conjunction with Dixon's Factorization Method to factor large numbers.  The 
s are chosen as
| (1) | 
| (2) | 
| (3) | 
The method requires about 
 steps, improving on the Continued Fraction Factorization
Algorithm by removing the 2 under the Square Root (Pomerance 1996).  The use of multiple
Polynomials gives a better chance of factorization, requires a shorter sieve interval, and is
well-suited to parallel processing.
See also Prime Factorization Algorithms, Smooth Number
References
Alford, W. R. and Pomerance, C.  ``Implementing the Self Initializing Quadratic Sieve on a Distributed
  Network.''  In Number Theoretic and Algebraic Methods in Computer Science, Proc. Internat. Moscow Conf., June-July 1993
  (Ed. A. J. van der Poorten, I. Shparlinksi, and H. G. Zimer).  World Scientific, pp. 163-174, 1995.
 
Brent, R. P.  ``Parallel Algorithms for Integer Factorisation.''  In Number Theory and Cryptography
  (Ed. J. H. Loxton).  New York: Cambridge University Press, 26-37, 1990.
  ftp://nimbus.anu.edu.au/pub/Brent/rpb115.dvi.Z.
 
Bressoud, D. M. Ch. 8 in Factorization and Prime Testing.  New York: Springer-Verlag, 1989.
 
Gerver, J.  ``Factoring Large Numbers with a Quadratic Sieve.''  Math. Comput. 41, 287-294, 1983.
 
Lenstra, A. K. and Manasse, M. S.  ``Factoring by Electronic Mail.''  In Advances in Cryptology--Eurocrypt '89
  (Ed. J.-J. Quisquarter and J. Vandewalle).  Berlin: Springer-Verlag, pp. 355-371, 1990.
 
Pomerance, C.  ``A Tale of Two Sieves.''  Not. Amer. Math. Soc. 43, 1473-1485, 1996.
 
Pomerance, C.; Smith, J. W.; and Tuler, R.  ``A Pipeline Architecture for Factoring Large Integers with the
  Quadratic Sieve Method.''  SIAM J. Comput. 17, 387-403, 1988.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein