| 
 | 
 | 
A (generalized) repunit to the base 
 is a number of the form
| Sloane | ||
| 2 | Sloane's A000225 | 1, 3, 7, 15, 31, 63, 127, ... | 
| 3 | Sloane's A003462 | 1, 4, 13, 40, 121, 364, ... | 
| 4 | Sloane's A002450 | 1, 5, 21, 85, 341, 1365, ... | 
| 5 | Sloane's A003463 | 1, 6, 31, 156, 781, 3906, ... | 
| 6 | Sloane's A003464 | 1, 7, 43, 259, 1555, 9331, ... | 
| 7 | Sloane's A023000 | 1, 8, 57, 400, 2801, 19608, ... | 
| 8 | Sloane's A023001 | 1, 9, 73, 585, 4681, 37449, ... | 
| 9 | Sloane's A002452 | 1, 10, 91, 820, 7381, 66430, ... | 
| 10 | Sloane's A002275 | 1, 11, 111, 1111, 11111, ... | 
| 11 | Sloane's A016123 | 1, 12, 133, 1464, 16105, 177156, ... | 
| 12 | Sloane's A016125 | 1, 13, 157, 1885, 22621, 271453, ... | 
Williams and Seah (1979) factored generalized repunits for 
 and 
. A (base-10) repunit can be
Prime only if 
 is Prime, since otherwise 
 is a Binomial Number which can be factored algebraically.
In fact, if 
 is Even, then 
. The only base-10 repunit Primes 
 for 
 are
, 19, 23, 317, and 1031 (Sloane's A004023; Madachy 1979, Williams and Dubner 1986, Ball and Coxeter 1987).  The number of factors
for the base-10 repunits for 
, 2, ... are 1, 1, 2, 2, 2, 5, 2, 4, 4, 4, 2, 7, 3, ... (Sloane's A046053).
| Sloane | ||
| 2 | Sloane's A000043 | 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, ... | 
| 3 | Sloane's A028491 | 3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, ... | 
| 5 | Sloane's A004061 | 3, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407, 10949, ... | 
| 6 | Sloane's A004062 | 2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, ... | 
| 7 | Sloane's A004063 | 5, 13, 131, 149, 1699, ... | 
| 10 | Sloane's A004023 | 2, 19, 23, 317, 1031, ... | 
| 11 | Sloane's A005808 | 17, 19, 73, 139, 907, 1907, 2029, 4801, 5153, 10867, ... | 
| 12 | Sloane's A004064 | 2, 3, 5, 19, 97, 109, 317, 353, 701, 9739, ... | 
A table of the factors not obtainable algebraically for generalized repunits (a continuously updated version of Brillhart
et al.  1988) is maintained on-line.  These tables include factors for 
 (with 
 odd) and 
 (for 
 Even and Odd) in the files ftp://sable.ox.ac.uk/pub/math/cunningham/10- and
ftp://sable.ox.ac.uk/pub/math/cunningham/10+. After algebraically factoring 
, these are sufficient for complete
factorizations.  Yates (1982) published all the repunit factors for 
, a portion of which are reproduced in the
Mathematica
 notebook by Weisstein.
A Smith Number can be constructed from every factored repunit.
See also Cunningham Number, Fermat Number, Mersenne Number, Repdigit, Smith Number
References
Ball, W. W. R. and Coxeter, H. S. M.  Mathematical Recreations and Essays, 13th ed.  New York: Dover, p. 66, 1987.
 
Beiler, A. H.  ``11111...111.'' Ch. 11 in 
  Recreations in the Theory of Numbers: The Queen of Mathematics Entertains.  New York: Dover, 1966.
 
Brillhart, J.; Lehmer, D. H.; Selfridge, J.; Wagstaff, S. S. Jr.; and Tuckerman, B.
  Factorizations of  
Dubner, H.  ``Generalized Repunit Primes.''  Math. Comput. 61, 927-930, 1993.
 
Guy, R. K.  ``Mersenne Primes.  Repunits.  Fermat Numbers.  Primes of Shape  
Madachy, J. S.  Madachy's Mathematical Recreations.  New York: Dover, pp. 152-153, 1979.
 
Ribenboim, P.  ``Repunits and Similar Numbers.''  §5.5 in The New Book of Prime Number Records.
  New York: Springer-Verlag, pp. 350-354, 1996.
 
Snyder, W. M.  ``Factoring Repunits.''  Am. Math. Monthly 89, 462-466, 1982.
 
 
Williams, H. C. and Dubner, H.  ``The Primality of  
Williams, H. C. and Seah, E.  ``Some Primes of the Form  
Yates, S.  ``Prime Divisors of Repunits.'' J. Recr. Math. 8, 33-38, 1975.
 
Yates, S.  ``The Mystique of Repunits.''  Math. Mag. 51, 22-28, 1978.
 
Yates, S.  Repunits and Reptends.  Delray Beach, FL: S. Yates, 1982.
 
, 
, 
 Up to High Powers, rev. ed.
  Providence, RI: Amer. Math. Soc., 1988.
  Updates are available electronically from ftp://sable.ox.ac.uk/pub/math/cunningham.
.''  §A3 in
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 8-13, 1994.
 Weisstein, E. W.  ``Repunits.''  Mathematica notebook Repunit.m.
.''  Math. Comput. 47, 703-711, 1986.
.  Math. Comput. 33, 1337-1342, 1979.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein