| 
 | 
 | 
Given a curve 
, the pedal curve of 
 with respect to a fixed point 
 (the Pedal Point) is the locus of the
point 
 of intersection of the Perpendicular from 
 to a Tangent to 
.  The parametric equations
for a curve 
 relative to the Pedal Point 
 are
![]()  | 
|||
![]()  | 
| Curve | Pedal Point | Pedal Curve | 
| Astroid | center | Quadrifolium | 
| Cardioid | cusp | Cayley's Sextic | 
| Central Conic | Focus | Circle | 
| Circle | any point | Limaçon | 
| Circle | on Circumference | Cardioid | 
| Circle Involute | center of Circle | Archimedean Spiral | 
| Cissoid of Diocles | Focus | Cardioid | 
| Deltoid | center | Trifolium | 
| Deltoid | cusp | simple Folium | 
| Deltoid | on curve | unsymmetric double folium | 
| Deltoid | Vertex | double folium | 
| Epicycloid | center | Rose | 
| Hypocycloid | center | Rose | 
| Line | any point | point | 
| Logarithmic Spiral | pole | Logarithmic Spiral | 
| Parabola | Focus | Line | 
| Parabola | foot of Directrix | Right Strophoid | 
| Parabola | on Directrix | Strophoid | 
| Parabola | reflection of Focus by Directrix | Maclaurin Trisectrix | 
| Parabola | Vertex | Cissoid of Diocles | 
| Sinusoidal Spiral | pole | Sinusoidal Spiral | 
| Tschirnhausen Cubic | Focus of Pedal | Parabola | 
See also Negative Pedal Curve
References
Lawrence, J. D.  A Catalog of Special Plane Curves.  New York: Dover, pp. 46-49 and 204, 1972.
 
Lee, X.  ``Pedal.''
http://www.best.com/~xah/SpecialPlaneCurves_dir/Pedal_dir/pedal.html.
 
 
Lockwood, E. H.  ``Pedal Curves.''  Ch. 18 in A Book of Curves.  Cambridge, England: Cambridge University Press,
  pp. 152-155, 1967.
 
Yates, R. C.  ``Pedal Curves.''  A Handbook on Curves and Their Properties.  Ann Arbor, MI: J. W. Edwards, pp. 160-165, 1952.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein